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A new method to pattern recognition of gas–liquid two-phase flow regimes based on improved local bin-
ary pattern (LBP) operator is proposed in this paper. Five statistic features are computed using the texture
pattern matrix obtained from the improved LBP. The support vector machine and back-propagation neu-
ral network are trained to flow pattern recognition of five typical gas–liquid flow regimes. Experimental
results demonstrate that the proposed method has achieved better recognition accuracy rates than oth-
ers. It can provide reliable reference for other indirect measurement used to analyze flow patterns by its
physical objectivity.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, much more attention has been paid on the changing
patterns and structures of multi-phase flows, which are exten-
sively encountered in petroleum exploitation and transport,
chemical engineering, nuclear reactors, and thermal systems. In
the gas–liquid two-phase flow, the distribution of the two media,
namely flow structure, is extremely complex and can vary instan-
taneously because of stochastic variation of gas–liquid two-phase
flow interface. Therefore, it is crucial to understand the interior
structure and flow properties of different flow patterns. At present,
image and video processing technologies and high frame-rate pho-
tographic techniques are used to analyze the inner structure and
flow properties of different flow patterns quantitatively and qual-
itatively. The aim is to develop a mathematical model and make
a deep understanding of different temporal and spatial flow char-
acteristics, as shown by Hsieh et al. (1997), Gopal and Jepson
(1997), Shi et al. (2005), Sathyamurthi et al. (2007), Bui et al.
(1999), Zhou et al. (2009).

As a matter of fact, many gas–liquid two-phase flow analysis
and recognition methods based on image or video processing tech-
niques have been developed in recent years. The dynamic images
of two-phase flow patterns obtained by high frame-rate camera
are characterized by direct-vision and physical objectivity, and
are able to reflect the information about the complex two-phase
ll rights reserved.
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flow structure to a certain extent. Hsieh et al. (1997) acquired dy-
namic images of gas–liquid two-phase flow in the riser in a natural
circulation loop by CCD and gave the statistics about image gray-
level distribution probabilities of four flow patterns, namely sin-
gle-phase flow, bubbly flow, slug flow, and churn flow, to classify
them and analyze their dynamic variations by image processing
techniques. Gopal and Jepson (1997) studied the dynamic charac-
teristics quantitatively, including local velocity and void distribu-
tion of slug flow in gas–liquid two-phase mixtures, by applying
image processing techniques and the kinetics model of slug flow
on the experimental conditions. Shi et al. (2005) presented image
analysis to extract bubble features of gas–liquid two-phase flow
images and employed the fuzzy inference algorithm to identify
flow patterns. Sathyamurthi et al. (2007) applied high-speed dy-
namic photography and chaotic box-counting techniques to calcu-
late fractal order of bubble voids in nucleate boiling wall, which
consists of an array of individually controlled micro-heaters. Bui
et al. (1999) presented a new method for automatic bubble identi-
fication of two-phase bubbly/slug flow. Recently, Zhou et al. (2009)
used histogram to compute the flow image features and applied
the support vector machine (SVM) to identify the flow patterns.

Although there are great progresses in studying the two-phase
flow properties, most of the research schemes are based on single
and standard image of typical flow pattern preprocessing to extract
some characteristic parameters of flow patterns. In the two-phase
flow process, the temporary flow patterns are various at different
positions as a result of the stochastic variability of phase hold-
up, flow structure, and the interfacial interaction. Therefore, it is
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worthy of studying on temporal and spatial evolution regularity of
two-phase flow patterns using image processing techniques, and
taking into account of flow pattern types and their dynamic devel-
opment information.

In this paper, we first propose the improved local binary pattern
(ILBP) operator to analyze the flow patterns and extract their flow
texture properties. We then train the SVM and back-propagation
(BP) neural network to identify the flow patterns. The original local
binary pattern (LBP) operator is a typical texture analysis algo-
rithm (see Maenpaa et al., 2000; Ojala et al., 2002; Ahonen et al.,
2004, Maenpaa, 2003) and is widely used in the texture classifica-
tion domain. However, it ignores the gray level variations of pixels
in a neighborhood. We improve the LBP operator by considering
the gray-level differences in texture description. In other words,
we concentrate on the visually most important texture pattern
parts of the images, without taking the unimportant details of
the texture pattern into account. This allows gray level (or illumi-
nation) adaptability. Experimental results show that our method
can extract the discriminate image features and obtain higher clas-
sification accuracies of the gas–liquid two-phase flow regimes, as
compared with other approaches.

The remainder of this paper is organized as follows. In Section 2,
we explain the method to capture gas–liquid two-phase flow vid-
eos with high-speed dynamic camera. In Section 3, we present the
improved local binary pattern operator, and discuss how we im-
prove the LBP operator to process the gas–liquid two-phase flow
video for feature extraction. In Section 4, we describe the applica-
tions of SVM and BP neural network for flow pattern recognition.
Finally, we conclude the paper in Section 5.
2. Information capture of gas–liquid two-phase flow images

The gas–liquid two-phase flow dynamic experiments in vertical
upward pipes were carried out in the multi-phase flow loop at Tian-
jin University, China. The two-phase flow monitoring system con-
sists of VMEA (see Sathyamurthi et al., 2007), a high-precision
differential micro pressure sensor, a laser sensor, and a high-speed
dynamic camera, called SpeedCam Visario (1536 � 1024, 1000
frames per second, 10 electronic shutters), based on CMOS technol-
ogy produced by Weinberger Corporation. The parameters of the
camera set in our experiment are as follows: resolution 640 � 480
and 200 frames per second. The measurement system is based on
the virtual instrument technology with data acquisition board PXI
4472, which is manufactured by National Instrument Corporation.
The sampling rate and recording time are respectively 400 Hz and
50 s. The tricolor fluorescent lamp with the color temperature
6500 K is acted as the illumining source, which is bright without
glitter.
Fig. 1. Five typical flow patterns: (a) bubble flow, (b) bubble-slug
Owing to transparency of air and water, a black-lighted imaging
technique (see Shi et al., 2005) is utilized to capture the shadow of
bubble shape in different flow patterns. Because the flow pattern
images will look nicer on the diffusion of backlighting, one or
two pieces of the sulfated paper are pasted on outside of the pipe
opposite the camera lens, so as to enhance quality of photographs.

The experimental media are air and tap water. The velocity of
superficial water is from 0.02 m/s to 0.4 m/s, and the superficial
gas velocity is from 0.005 m/s to 3.85 m/s. Five typical flow pat-
terns in the vertical upwards pipe, namely, bubble flow, bubble–
slug flow, slug flow, slug–churn flow, and churn flow, are shot as
shown in Fig. 1. The images are affected by acrylic pipe cleanliness
and the level of light, so some preprocessing procedures, such as
anti-noise and image enhance, must be conducted to improve
the image quality.
3. Local binary pattern based gas–liquid flow regime feature
extraction

3.1. Local binary pattern

The local binary pattern (LBP) operator was proposed to measure
the local contrast in texture analysis (see Maenpaa et al., 2000; Ojala
et al., 2002). It has been successfully applied to visual inspection and
image retrieval as shown by Maenpaa and Pietikainen (2003).

The LBP operator is defined in a circular local neighborhood.
With the center pixel as the threshold, its circularly symmetric P
neighbors within a certain radii R are labeled as 1 when its value
is larger than the center or labeled as 0 when its value is smaller
than the center. Note that P = (2R + 1)2 � 1. Then, the LBP code of
the center pixel is produced by multiplying the thresholded values
(1 or 0) by weights given to the corresponding pixels, and sum-
ming up the result. For example, the LBP of a 3 � 3 window (where
R = 1 and P = 8) uses the center pixel as a threshold value, and the
values of the thresholded neighbors are multiplied by the binomial
weight and summed to obtain the LBP number. In this way, the LBP
can produce a number from 0 to 255. The entire LBP numbers com-
posite a texture spectrum of an image with 256 gray levels. Given
parameters P and R, which control the quantization of the angular
space and spatial resolution respectively, the LBP number, denoted
by LBPp, is defined as

LBPP ¼
XP�1

p¼0

Sðgp � gcÞ � 2p ð1Þ

where gc denotes the gray level of the center pixel c in the P neigh-
borhood, gp denotes the gray level of the neighboring pixels p, and
S(x) refers to the sign function defined as
flow, (c) slug flow, (d) slug-churn flow, and (e) churn flow.
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SðxÞ ¼
1; if x P 0
0; otherwise

�
ð2Þ

More detailed information about LBP including its extensions,
uniform, rotation invariance, and multi-scale can be referred to
Ahonen et al. (2004) and Maenpaa (2003).
3.2. The improved LBP operator

The traditional LBP operator ignores the gray level changes of
pixels and illumination adaptability. Therefore, we improve the
LBP operator by considering the magnitude of gray-level differ-
ences, which is important in texture description. Our LBP operator
concentrates on the visually most important texture pattern parts
of images and disregards the unimportant details.

In the improved LBP operator, we introduce a parameter a to
control the difference between neighboring pixels. If the difference
between two pixels does not reach an extent controlled by a, we
regard the two pixels as the same. The improved LBP operator is
defined as

LBPa
P ¼

XP�1

p¼0

S
gp � gc

�g
� a

� �
� 2p ð3Þ

where g is the mean value of pixels in the neighborhood.
The improved LBP operator is based on the features of video

frames captured by the two-phase flow monitoring system and
ignores the non-significant details, so that it can extract the most
important texture patterns. Fig. 2 shows the examples of applying
the traditional LBP operator and the improved LBP operator. We
can observe that the improved LBP operator can extract the main
characteristic of the flow images.
Fig. 2. Left column: the original flow images; middle column: results of the traditional
(R = 1, P = 8, and a = 0.15).
3.3. Texture pattern matrix and its feature extraction

All the LBP numbers can composite a texture spectrum, named
texture pattern matrix (TPM), which is a map of a flow image. The
map can show the distribution of gray levels and the main texture
information of the flow image. Five features can be extracted from
the TPM. The first three features are average (denoted by AVE),
deviation (DEV), and energy (ENE), and the other two statistics fea-
tures are entropy (ENT) and correlation (COR).

Let f(x, y) be the TPM of size M � N. The five features are listed
as follows:
AVE ¼ 1
MN

XM�1

x¼0

XN�1

y¼0

f ðx; yÞ ð4Þ

DEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
MN

XM�1

x¼0

XN�1

y¼0
ðf ðx; yÞ � AVEÞ2

r
ð5Þ

ENE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM�1

x¼0

XN�1

y¼0
f 2ðx; yÞ

r
ð6Þ

ENT ¼ �
XM�1

x¼0

XN�1

y¼0

f ðx; yÞ
ENE

ln
f ðx; yÞ
ENE

� �� �
ð7Þ

COR ¼
XM�1

x¼0

XN�1

y¼0

xyf ðx; yÞ � lxly

rxry
ð8Þ
where l is the mean value and r is the standard deviation.
These five features were used to construct the dynamic images

feature curves shown in previous work Zhang and Jin (2009). In
this paper, we mainly focus on the flow pattern recognition.
Fig. 3 shows five feature curves of five flow patterns in a 4-s
high-speed flow video with parameters: R = 1, P = 8, and a = 0.15.
LBP patterns (R = 1 and P = 8); right column: results of the improved LBP patterns



Fig. 3. Five feature curves of five flow patterns in a 4-second high-speed flow video with parameters: R = 1, P = 8, and a = 0.15.
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4. Pattern recognition of flow regimes

In this section, these features combined to establish the data
set, and the support vector machine and BP neural network are
used separately to realize the automatic recognition of the flow
patterns.
4.1. Support vector machine

The support vector machine (SVM) was developed by Vapnik
(1998) for pattern recognition and function regression. It has been
proved to be successful in many other applications, including
handwritten digit recognition, image classification, face detection,
object detection, and text classification (see Cortes and Vapnik,
1995; Chang et al., 2000).
Table 1
Comparisons of classification accuracies of using SVM with ILBP and TLBP.

Bubble Slug Bubble–
slug

Churn Slug–
churn

Accuracies
(%)

Method

Bubble 200 0 0 0 0 100 ILBP
189 1 5 2 3 94.5 TLBP

Slug 1 199 0 0 0 99.5 ILBP
1 195 2 1 1 97.5 TLBP

Bubble–slug 0 0 200 0 0 100 ILBP
4 3 188 3 2 94 TLBP

Churn 0 1 0 199 0 99.5 ILBP
1 4 2 184 9 92 TLBP

Slug–churn 0 1 0 0 199 99.5 ILBP
2 3 4 6 185 92.5 TLBP
4.1.1. SVM parameters setting
We use the SVM implementation by libSVM tool, a C++ open

source library constructed by Chang and Lin (2001) and Lin
(2001) in our experiments. The SVM parameters are selected as
follows:

� Type of SVM: We choose the type c-SVC.
� Kernel type: A radial basis function (RBF) kernel was used. Note

that the RBF shows a better performance rate for classifying
non-linear problems than other types of kernels.
� Example set: The example set is 2000 images extracted from

video flow.
� Determination of parameter Gamma and cost C: The two

parameters are decided by validating the classification accuracy
of the testing examples. In the training process, cross-validation
as shown in Lin (2001) was used. For every two parameter
Gamma and C, we take the average classification accuracy as
their corresponding accuracy. However, because of the large
scope of Gamma and C, we used the parallel grid search algo-
rithm as shown in Lin (2001) to find the Gamma and C with best
accuracy. Here, we improve the search algorithm to save the
searching time. Firstly, we search the best combination of
Gamma and C in a large scope coarsely, and then we conduct
the second search in a small scope based on the best combina-
tion. Finally, we obtain Gamma and C of SVM.
4.1.2. Experimental results by SVM
In the experiments, we divided the 2000 example image into

odd and even parts. Odd part was normalized and used as the
training set to train the SVM, and even part was used to test and
validate the SVM. Experimental results show that the classification
accuracy rates of testing examples and validating examples based
on the improved LBP operator are 99.8% and 99.6% respectively,
with an average of 99.7%; while using the traditional LBP operator,
the average accuracy only reaches 94.1%. Table 1 shows the classi-
fication accuracies of the five flows using the SVM with the im-
proved LBP (denoted by ILBP) as compared with the traditional
LBP (denoted by TLBP). From the table, we can see that the recog-
nition accuracies of bubble flow and bubble–slug flow reach 100%,
and those of others are 99.5%. Churn flow and slug–churn flow can
often be misclassified into slug flow. Because of the lacking dis-
crimination of the traditional LBP operator, its result is about
5.9% lower than that of the improved LBP.

Zhou et al. (2009) used the SVM to identify the flow patterns of
gas/water two-phase flows. They constructed the feature vector
based on the image histogram, and obtained the classification
accuracy of 99.04%. Zhao et al. (2006) also used the SVM to classify
the flow patterns, but they extracted features in frequency domain
by using the linear prediction method and in time domain by using
the time series statistical analysis. The classification accuracy they



Table 2
Comparisons of classification accuracies of using BP neural network with ILBP and
TLBP.

Bubble Slug Bubble–
slug

Churn Slug–
churn

Accuracies
(%)

Method

Bubble 200 0 0 0 0 100 ILBP
187 1 4 5 3 93.5 TLBP

Slug 0 199 0 0 1 99.5 ILBP
2 188 2 3 5 94 TLBP

Bubble–slug 0 0 197 0 3 98.5 ILBP
4 2 184 7 3 92 TLBP

Churn 0 0 0 200 0 100 ILBP
3 5 4 177 11 88.5 TLBP

Slug–churn 0 1 1 0 198 99 ILBP
2 3 3 9 183 91.5 TLBP
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obtained was 95.39%. Obviously, our method achieves the best
accuracy rate of 99.7% in average.

4.2. BP neural network

In this section, we use BP neural network to recognize the gas–
liquid two-phase flow patterns for further validation. Zhou et al.
(2005) and Sun et al. (2006) explored the similar work using neural
networks, and obtained the classification accuracies of 93% and
91.5%, respectively.

In our experiments, we use the feed-forward BP neural network
to train examples. By using the improved LBP operator, we obtain
the recognition accuracy of 99.4%, which is better than the accu-
racy of 91.9% of using the traditional LBP operator. Table 2 shows
the classification accuracies of the five flows using BP neural net-
work with the improved LBP (denoted by ILBP) as compared with
the traditional LBP (denoted by TLBP). From the table, we can see
that the recognition accuracies of bubble–slug and slug–churn
flows are a little bit lower than those of the other three flows.
The result is consistent with the fact of the dynamic spatio-tempo-
ral movements of these lows.

5. Conclusions

Applying high-speed dynamic photography and digital image
processing techniques to directly analyze flow patterns of evolving
images explores a new approach to investigate the temporal and
spatial evolution features of two-phase flow patterns. It is also a
beneficial complement and reference for other indirect measure-
ment used to analyze the structure and movement properties of
flow patterns.

We have presented in this paper the improved LBP operator to
recognize of gas–liquid two-phase flow patterns. We use the SVM
and BP neural network tools to train and test the image features.
Experimental results show that the improved LBP operator can de-
scribe the main characters of flow images more effectively than the
traditional LBP operator. Furthermore, the method avoids complex
calculation of feature extraction. In the future, we will focus on the
pattern recognition by improved LBP operator under different
neighborhoods and different radii.
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